ELSEVIER

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Partial oxidation of CH₄ with air to produce pure hydrogen and syngas

Osami Nakayama a, Na-oki Ikenaga a, Takanori Miyake a, Eriko Yagasaki b, Toshimitsu Suzuki a,*

ARTICLE INFO

Article history: Available online 30 June 2008

Keywords: Partial oxidation Iron oxide catalysis Gas slid reaction Cyclic operation

ABSTRACT

The gas–solid reaction between methane and the lattice oxygen of Ni, Co, and Fe-oxides loaded on various support materials produced a synthesis gas (hydrogen and carbon monoxide) at $600-800\,^{\circ}$ C. Metal oxides were reduced to metals or lower valence oxides, and they were re-oxidized to oxides by introducing air after the reaction. Thus, production of hydrogen or synthesis gas free from nitrogen can be achieved alternatively without using pure oxygen. As a metal oxide, Fe₂O₃ and Rh₂O₃-loaded on Y₂O₃ exhibited the highest H₂ selectivity of 60.1% with a moderate CH₄ conversion of 54% and a high lattice oxygen utilization of 84% at 800 °C.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen production from natural gas has generally been conducted by steam reforming (SR) (reaction (1)) [1].

$$CH_4 + H_2O \rightarrow 3H_2 + CO \quad \Delta H_{298}^{\circ} = +206 \text{ kJ/mol}$$
 (1)

Since reaction (1) is highly endothermic and runs at high temperatures above 1073 K, the reaction necessitates a large amount of energy, and as a result a large amount of CO_2 is emitted into the atmosphere.

In contract, the catalytic partial oxidation of CH_4 (POM) (reaction (2)) is an exothermic reaction and has the advantage that it is performed at relatively lower temperatures. Since Ashcroft et al. recalled attention to this reaction in 1990 [2], this field of chemistry has attracted much interest of many researchers [2–5].

$$CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO \quad \Delta H_{298}^{\circ} = -36 \text{ kJ/mol}$$
 (2)

Application of Ni-loaded catalysts used to steam reforming has been investigated. However, in the catalytic partial oxidation, the catalysts have suffered from sintering of Ni and carbon deposition [6,7]. Nearly all the noble metal catalysts can produce syngas, showing superior advantages to Ni-loaded catalysts with regard to both activity and carbon resistance [8]. However, noble metals are very costly and their reserves are limited in the world. Thus, it may be somewhat difficult to apply them to industrial processes. To overcome this problem, Takehira et al. [9] have applied a solid-

phase crystallization method to Ni-loaded MgO-Al₂O₃ catalyst. This catalyst has highly dispersed Ni metal and high durability against coke formation. However, pure oxygen is typically required for POM, and in the commercial operation of POM, a costly oxygen plant must be installed [10,11].

As an alternative process, in order to obtain pure hydrogen from CH_4 , catalytic decomposition of CH_4 over Ni/SiO_2 is proposed (reaction (3)), and carbon formed could potentially be removed by introducing steam to give H_2 and CO (reaction (4)) [12].

Step 1
$$CH_4 + Cat. \rightarrow C/Cat. + 2H_2$$
 $\Delta H_{298}^{\circ} = +75 \text{ kJ/mol}$ (3)

Step 2 C/Cat. +
$$H_2O \rightarrow Cat. + CO + 2H_2 \Delta H_{298}^{\circ}$$

= +131 kJ/mol (4)

However, such a process yields a large amount of carbon on the catalyst bed, which causes a large pressure drop between the front end and the bottom of the bed, making operation difficult in a fixed bed reactor. In addition, if steam is used to re-generate the carbonformed catalyst, the advantage of such a process against steam reforming would be diminished.

The redox properties of NiO (reactions (5) and (6)) dispersed with different inorganic binders including MgO, Y-SZ and Ni-Mg-Al mixed oxides have been investigated [13–15]. The reactions have been studied by means of thermogravimetric measurement during redox cycles at a constant temperature. Ni-Mg-Al mixed oxides have been reported to exhibit excellent regenerability in cyclic use [15].

Step 1 NiO + CH₄
$$\rightarrow$$
 Ni + CO + 2H₂ $\Delta H = +205 \text{ kJ/mol}$ (5)

Step 2 Ni +
$$\frac{1}{2}x$$
Air(O₂ + N₂)NiO_x + $\frac{1}{2}x$ N₂ $\Delta H = -241$ kJ/mol (6)

^a Department of Chemical Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan

^b Energy Use R&D The Kansai Electric Power Co. Ltd., Amagasaki, Hyogo 661-0974, Japan

^{*} Corresponding author. Fax: +81 6 6388 8869. E-mail address: tsuzuki@ipcku.kansai-u.ac.jp (T. Suzuki).

Recently, the gas-solid reaction between methane and lattice oxygen of oxides to give synthesis gas was reported by Otsuka et al. (reactions (7)–(9)) [16].

Step 1
$$CeO_2 + xCH_4 \rightarrow CeO_{2-x} + xCO + 2xH_2$$
 (7)

Step 2
$$CeO_{2-x} + xCO_2 \rightarrow CeO_2 + xCO$$
 (8)

$$CeO_{2-x} + xH_2O \rightarrow CeO_2 + xH_2 \tag{9}$$

Similarly, the redox cycle, the reduction of Fe_2O_3 with CH_4 (reaction (10)) and the subsequent oxidation of iron metal with H_2O (reactions (11) and (11')) or CO_2 has been proposed [17–23].

Step 1 Fe₂O₃ + 3CH₄
$$\rightarrow$$
 2Fe + 3CO + 6H₂ $\Delta H = +239.1$ kJ/mol (10)

Step 2 3Fe +
$$4H_2O \rightarrow Fe_3O_4 + 4H_2$$
 $\Delta H = +151.2 \text{ kJ/mol}$ (11)

$$2Fe + 3H_2O \rightarrow Fe_2O_3 + 3H_2 \quad \Delta H = +99.4 \text{ kJ/mol}$$
 (11')

The studies have shown that the lattice oxygen of iron oxide or cerium oxide exhibits high activity for methane oxidation to give synthesis gas, and that there is no danger of an explosion occurring with pure oxygen. However, these reactions with H_2O or CO_2 are highly endothermic and consume a large amount of energy, necessitating a higher reaction temperature.

Shikong et al. have reported that $La_{0.9}Sr_{0.1}FeO_3$ catalyst shows high catalytic activity for the redox cycle between reaction (12) and reaction (13) by using air at 900 °C [24]. Wei et al. have reported that CeO_2 catalyst exhibits high catalytic activity in the same reaction by using air above 865 °C [25]. In addition, reduction of metal oxides such as WO_3 [26] and $LaFeO_3$ perovskite [27,28] with CH_4 and oxidation of the reduced metal oxide has been reported.

Step 1
$$C_aH_b + M_cO_d \rightarrow aCO + \frac{b}{2}H_2 + cM$$
 (12)

Step 2
$$M + \frac{1}{2}mAir(O_2 + 4N_2) \rightarrow MO_m + 2mN_2$$
 (13)

However, the gas–solid reaction between methane and the lattice oxygen of oxides to the synthesis gas runs at a high temperature of nearly above 865 °C and consumes a large amount of energy. Metal oxides are rapidly deactivated by repeated runs of the reduction of oxide and re-oxidation of metal due to metal sintering.

This paper deals with the oxidation of CH_4 using lattice oxygen of transition metal oxides and re-oxidation of reduced metals by air in order to develop a process that can be carried out at a lower temperature. We found in particular that Fe_2O_3 -loaded catalysts with a small amount of co-loaded Rh_2O_3 exhibit high and constant catalytic activities for repeated reduction and oxidation cycles.

2. Experimental

2.1. Catalyst preparation

The catalyst supports used in this study were CeO₂, Y_2O_3 , SiO₂ (Wako Pure Chemical Industries Ltd.), Al_2O_3 (Sumitomo Chemical Co.), MgO (1000A; Ube Industries Ltd.), TiO₂ (P25; Japan Aerosil Co.), and La_2O_3 (Nacalai Tesque, Inc.). CeO₂ and Y_2O_3 were prepared by thermal decomposition of Ce(NO₃)₃·6H₂O and (CH₃COO)₃Y·4H₂O (Wako Pure Chemical Industries Ltd.) at 600 °C under air for 5 h, respectively.

The supported Fe $_2$ O $_3$ -Rh $_2$ O $_3$ /Y $_2$ O $_3$ catalyst was prepared by impregnating the suspended Y $_2$ O $_3$ with an aqueous solution of Fe(NO $_3$) $_3$ ·9H $_2$ O (Wako Pure Chemicals Ltd.) and RhCl $_3$ ·3H $_2$ O (Mitsuwa Pure Chemicals), followed by evaporation-to-dryness.

The prepared catalyst precursors were calcined at 600 °C for 5 h in air prior to the reaction.

2.2. Catalytic reaction

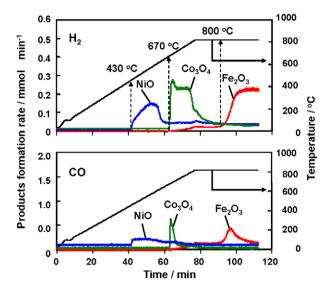
The partial oxidation of methane was carried out with a fixed bed flow-type quartz reactor (8 mm i.d. \times 350 mm L and 4 mm i.d. \times 200 mm L) at a temperature range of 500–800 °C under atmospheric pressure. After placing 0.5 g of the catalyst in the reactor, the catalyst was heated to the desired temperature. The partial oxidation of CH₄ was carried out under 10 mL/min of CH₄ and 40 mL/min of Ar, and re-oxidation of the reduced catalyst was carried out with 10 mL/min of O₂ and 40 mL/min of Ar at a temperature range of 500–800 °C. Products were analyzed with an on-line gas chromatograph and a quadrupole mass spectrometer. Selectivities to CO, CO₂, and carbon were calculated from the absolute amounts of produced CO, CO₂, and carbon against converted CH₄. H₂ selectivity was calculated from the absolute amounts of produced H₂ and H₂O against converted CH₄.

2.3. Catalyst characterization

Temperature-programmed reaction with methane (TPR) was carried out by an on-line quadrupole mass spectrometer (HAL201, Hiden Analytical Ltd.) fitted with an outlet of a fixed bed quart reactor (i.d. 4 mm \times 200 mm). After placing 100 mg of catalyst into the reactor, 10 mL/min of CH4 and 20 mL/min of Ar were introduced. A mass spectrometer was used to scan the corresponding parent peaks of the following 6 compounds, H2, H2O, CH4, CO, CO2, and O2, within 1 s, and repeated scans were collected on a personal computer.

Powder X-ray diffraction (XRD) patterns were obtained with a Shimadzu XRD-6000 using monochromatized Cu $K\alpha$ radiation.

Surface areas of the support and catalyst were measured by the BET method using N_2 at $-197\,^{\circ}\text{C}$ with an automatic Micromeritics Gemini 2375.


A scanning electron microscope (SEM), JEOL JSM5410, was employed to evaluate the catalyst surface.

3. Results and discussion

3.1. Effects of metal oxide and support material on the reduction behavior with methane

Previous studies of the reduction of Fe₂O₃ with CH₄ were carried out with a bulk iron oxide with small amounts of additives [19]. The amount of lattice oxygen utilized to oxidize CH₄ could be maximized without any additives. In this simple system, the reaction with methane would proceed at a higher temperature, and bulk oxides tend to aggregate when they are reduced metallic species. In addition, bulk oxide generally has a small surface area.

Supports having high surface areas are commonly used to disperse active species on them, resulting in an increase in the number of active site. In addition, prevention of the sintering of active sites could be expected. In order to lower the reaction temperature of an oxide with methane, use of a support was examined. At first, selection of active metal oxides was performed with a typical support, Al₂O₃. As active oxides, less expensive iron group metal oxides were selected. Fig. 1 shows the temperature-programmed reaction of CH₄ with NiO, Co₃O₄, and Fe₂O₃ on Al₂O₃. From the H₂ production behavior, NiO afforded the lowest reaction temperature of 430 °C, and Co₃O₄ reacted at 670 °C. Fe₂O₃ was not reduced below 800 °C and was reduced after 10 min on holding at 800 °C. In TPR runs, a holding time of 40 min was applied at 800 °C. After the TPR run on NiO-loaded Al₂O₃, ca. 1.3 mmol of carbon

Fig. 1. CH₄-TPR patterns of iron group metal oxide-loaded Al₂O₃. Upper trace, H₂ formation rate; lower trace, CO formation rate. Catalyst: 0.1 g, 20 mmol of metal oxide/1 g of Al₂O₃, heating rate: $10 \, ^{\circ}\text{C/min}$, CH₄/Ar = $10/20 \, (\text{mL/min})$.

formed on the catalyst; in contrast, no carbon formation was observed on Fe $_2$ O $_3$ -loaded catalyst. Bulk Co $_3$ O $_4$ reacted at a moderate reaction temperature with a small amount of deposited carbon.

From these results, Fe_2O_3 was selected as a metal oxide and an optimal support material was then looked for. Selection was carried out by TPR, and the results are summarized in Table 1. Initial temperature indicates the temperature at which H_2 production started, and the numerals in the parentheses [800 °C (7 or 16 min)] indicate that H_2 production started 7 or 16 min after reaching 800 °C. Except for Y_2O_3 , on all other support materials, the reaction of CH_4 with Fe_2O_3 occurred at or above 800 °C and no carbon formation was observed. However, only a small amount of carbon was detected on Y_2O_3 -supported catalyst, which is likely

due to the higher conversion of CH_4 on this support. Further studies were carried out with Fe_2O_3 loaded on Y_2O_3 .

The ratios of H_2/CO were very high in all the support materials, showing that complete oxidation of CH_4 to CO_2 and H_2O did occur (reaction (5)), and that reforming of CH_4 with H_2O and CO_2 occurred slightly, with a considerable extent of CH_4 decomposition to H_2 (reaction (14)). Low activity of iron catalyst on the reforming is consistent with reported results [9]. In general, CO_2 reforming is a slower reaction than H_2O reforming, which also contributes to the higher H_2/CO ratio.

$$Fe + xCH_4 \rightarrow FeCx + \frac{x}{2}H_2 \tag{14}$$

It is desirable to use a composite oxide containing higher amounts of Fe_2O_3 to obtain a maximum amount of H_2 and CO from a unit mass of composite catalysts. The loading level of Fe_2O_3 over Y_2O_3 was examined, and the results are summarized in Table 2. The highest amount of H_2 was obtained on Fe_2O_3 (50 mmol)/ Y_2O_3 (g) catalyst, and a large amount of carbon formed with a low CO selectivity. A catalyst Fe_2O_3 (20 mmol)/ Y_2O_3 (g) afforded a high selectivity to CO with low carbon formation. This result is attributed to the higher feed ratio of CH_4 to lattice oxygen of iron, resulting in CH_4 decomposition (reaction (14)).

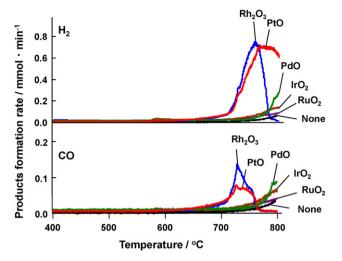
3.2. Effects of additive on Fe₂O₃/Y₂O₃ catalyst

As discussed above, Fe $_2$ O $_3$ /Y $_2$ O $_3$ reacted with CH $_4$ to give H $_2$ and CO in the TPR runs. However, the initial temperature was still high (722 °C), and considerable carbon formation was observed. In addition, the activities of steam and CO $_2$ reforming were low. To overcome these points, the effects of additives were examined, and the results are shown in Fig. 2 and Table 3. The initial reduction temperature decreased below 700 °C with the addition of a small amount of Rh and Pt. However, addition of Ru, Pd, and Ir only slightly decreased the initial temperature, and no rapid increases in the reaction rate were observed with increases in the reaction temperature. Table 3 illustrates the results of the reaction of CH $_4$ at a constant temperature of 800 °C, where much smaller H $_2$ /CO

Table 1Effect of the support on Fe₂O₃-loaded catalyst in the partial oxidation of methane

Support	Initial temperature ^a (°C)	Fe (mmol)	Lattice O (mmol)	Produc	t (mmol)			Lattice O conversion (%)	Carbon (mmol)
				H ₂	СО	CO ₂	H ₂ O		
MgO	800 (after 7 min)	0.41	0.62	0.78	0.17	0.09	0.04	62.0	0.00
Al_2O_3	800 (after 16 min)	0.21	0.35	2.22	0.17	\sim 0	0.37	154.3	0.00
TiO ₂	No reaction	0.25	0.38	0.15	0.17	0.02	0.20	100.0	0.00
$Y_{2}O_{3}$	722	0.06	0.09	1.20	0.09	0.01	0.05	177.8	0.08
La_2O_3	800	0.07	0.11	0.65	0.02	0.01	0.05	72.7	0.00
CeO ₂	800	0.13	0.2	0.84	0.33	0.06	0.05	220.0	0.00
None	No reaction			0.23	0.05	0.05	0.40		0.00

Catalyst: Fe_2O_3 10 mol% in the catalyst, 0.1 g, $CH_4/Ar = 3/27$ (mL/min), catalysts were heated at a rate of 10 °C/min until 800 °C and maintained at 800 °C for 40 min. a Initial H_2 formation temperature; after xx min indicates reaction started after reaching 800 °C.

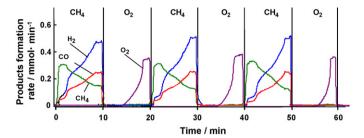

 $\label{eq:Table 2} \textbf{Effect of } Fe_2O_3 \ loading \ level \ in \ Fe_2O_3/Y_2O_3 \ on \ the \ partial \ oxidation \ of \ methane$

Fe loading level ^a (mmol/1 g Y ₂ O ₃)	Metal (mmol)	Lattice O ^b (mmol)	Product (mmol)					Seletivity (%)			H ₂ /CO ratio
			H ₂	H ₂ O	СО	CO ₂	Carbon	H ₂	СО	CO ₂	
90	1.10	1.65	6.42	1.09	0.54	0.22	2.83	85.5	15.1	6.2	11.8
50	1.00	1.50	18.74	0.78	0.60	0.23	3.12	96.0	15.2	5.9	31.2
20	0.75	1.13	6.32	0.61	0.53	0.15	0.85	91.1	34.7	9.9	11.9
10	0.56	0.83	6.37	0.27	0.34	0.07	1.01	96.0	24.1	5.1	18.6
5	0.35	0.53	5.12	0.34	0.36	0.03	1.54	93.7	18.7	1.4	14.2

Catalyst: 0.1 g, $CH_4/Ar = 3/27$ (mL/min), catalysts were heated at a rate of 10 °C/min until 800 °C and maintained at 800 °C for 40 min.

^a x mmol of Fe₂O₃/1 g Y₂O₃.

b Lattice oxygen in Fe₂O₃.


Fig. 2. Effect of additive metal to Fe-loaded catalysts on the initial reduction temperature. Upper trace, H_2 formation; lower trace, CO formation. Catalyst: 0.1 g, Fe_2O_3 20 mmol; additive 0.5 mmol/1 g of Y_2O_3 , heating rate: 10 °C/min, $CH_4/Ar = 10/20$ (mL/min).

ratios were observed. Fe $_2$ O $_3$ -Rh $_2$ O $_3$ /Y $_2$ O $_3$ afforded the highest CH $_4$ conversion with a low H $_2$ /CO ratio compared to the TPR results. A low H $_2$ /CO ratio correlates with decreases in both the decomposition of CH $_4$ and carbon formation. With regard to the H $_2$ /CO ratio, large differences in the TPR run and the constant temperature run were observed. This result is partly due to differences in the feed to the lattice oxygen ratio. Namely, in the constant temperature run, a limited amount of CH $_4$ was supplied to the catalyst bed during a short period at 800 °C. In contrast, in the TPR run, the reaction time was longer than that of the constant temperature run. Thus on the active catalyst, CH $_4$ decomposition did occur to give H $_2$ and carbon (reaction (14)).

For the practical operation of this process, it is preferable to completely use the lattice oxygen of Fe₂O₃. Under such conditions, however, there is also undesired CH₄ decomposition. Therefore, it is desirable to limit the CH₄/lattice oxygen ratio below stoichiometric levels. The role of Rh₂O₃ could be ascribed to promotion of the reforming reaction of CH₄ with H₂O and CO₂. Although no information regarding Rh species was obtained, metallic Rh would be formed during the reaction with CH₄, which is well known to be an active phase in the reforming reaction [3,4].

3.3. Re-generation of used Fe_2O_3 - Rh_2O_3 / Y_2O_3 catalyst with Ar-O₂ mixed gas

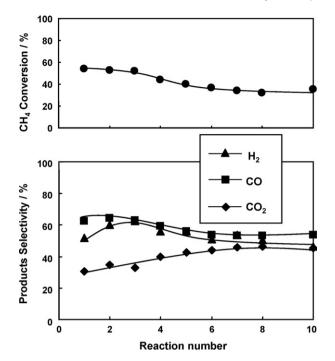
Fig. 3 shows the products for three successive series of reactions and regeneration cycles under constant temperature. With the introduction of CH_4 , a rapid response of H_2 was observed, followed by an increase in the CO formation rate and a gradual decrease in the unreacted CH_4 concentrations. After sweeping off CH_4 , $Ar-O_2$ (4:1) mixed gas was introduced. Here, detection of the effluent was

Fig. 3. Change in the product formation rates over $Fe_2O_3(20)$ -Rh $_2O_3(0.5)/Y_2O_3$ in the repeated reaction and regeneration cycle. Catalyst: 0.5 g, reaction temperature: 800 °C, re-oxidation temperature: 800 °C, reaction time: 10 min, re-oxidation time: 10 min, CH $_4$ or $O_2/Ar = 10/40$ (mL/min), CH $_4/Fe_2O_3 = 2.1$.

made possible by a mass spectrometer, and air could not be utilized to detect CO. No response of O_2 was observed just after the O_2 introduction, and after ca. 5 min, O_2 gradually began to appear and reached original concentrations with small responses to CO and CO_2 (very low concentration).

The same reaction behavior was observed in the second and the third reaction stages with CH_4 , indicating that oxidation of the reduced catalyst with O_2 for 10 min is sufficient to complete regeneration. The fact that only trace amounts of CO and CO_2 were observed in the oxidation stage clearly shows that carbon formation during the reaction stage is negligible.

Reaction and regeneration cycles were further repeated, and the results are shown in Fig. 4. Gradual decreases in the CH_4 conversion were initially observed. However, as seen in Fig. 4, after the sixth cycle, almost constant conversion of CH_4 and H_2 and CO selectivities was obtained. The reason for the initial decrease in activity was ascribed to a decrease in the surface area of the catalyst after the first oxidation stage $(24.0-4.4 \, \text{m}^2/\text{g})$.


Fig. 5 shows changes in the reaction products during the reaction and oxidation stages with different lattice oxygen to feed ratios (0.1 g catalyst), as shown in the conditions applied to those applied to Fig. 3 (0.3 g catalyst), together with the changes in the catalyst bed temperature. With the introduction of CH₄, a prompt response of CO₂ was observed and it decreased to a certain level, where a higher CH₄ concentration was fed against the catalysts (CH₄/Fe₂O₃ = 0.4). The response of H₂ and CO gradually increased together with a decrease in the response of unreacted CH₄. During the reaction stage (Fig. 5a and b), a decrease of ca. 15 °C in the catalyst bed temperature was observed, seeming to indicate that the heat of exothermic CH₄ oxidation almost compensated for the endothermic reforming reactions.

After sweeping off CH_4 and product gases by Ar, an $Ar-O_2$ mixture was introduced to regenerate the catalyst. A large and rapid increase in the catalyst bed temperature was observed without leaking of O_2 into the effluent. The bed temperature decreased to the prefixed furnace temperature after reaching the maximum of 980 °C, followed by an O_2 response. No CO or CO_2 formation was observed, indicating that O_2 was consumed to oxidize reduced iron species to Fe_2O_3 .

 $\label{eq:table 3} \textbf{Effect of additive metal to } Fe_2O_3/Y_2O_3 \text{ catalysts on the partial oxidation of methane}^a$

Additive	Product (mmol)				Conversi	Conversion (%)		Selectivity (%)			
	H ₂	H ₂ O	СО	CO ₂	Carbon	CH ₄	Lattice O ^a	H ₂	СО	CO ₂	
Rh ₂ O ₃	1.84	0.55	0.85	0.64	0.04	35.4	46.6	77.0	55.8	41.5	2.2
PtO	1.04	0.96	0.49	0.44	0.05	20.2	41.9	52.0	49.8	44.7	2.1
None	0.48	0.82	0.32	0.32	0.23	14.8	31.0	36.8	36.7	36.8	1.5

^a Fe2O3 20 mmol; additive 0.5 mmol/1 g of Y2O3. Catalyst: 0.5 g, reaction temperature: 800 °C, reaction time: 10 min, CH4 or O2/Ar = 10/40 (mL/min), CH4/Fe2O3 = 2.1.

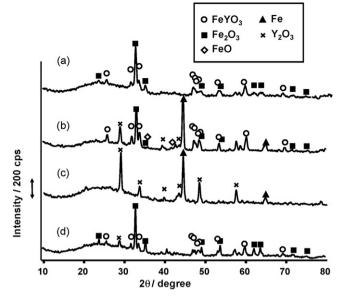
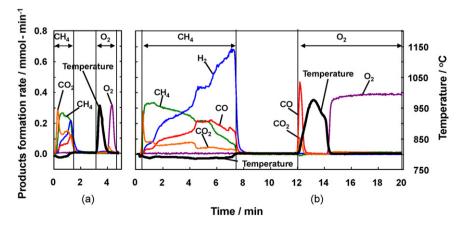


Fig. 4. Catalyst life time test of $Fe_2O_3(20)$ - $Rh_2O_3(0.5)/Y_2O_3$. Catalyst: 0.5 g, reaction temperature: 800 °C, re-oxidation temperature: 800 °C, reaction time: 10 min, re-oxidation time: 10 min, CH_4 or $O_2/Ar = 10/40$ (mL/min), $CH_4/Fe_2O_3 = 2.1$.

Similar behavior was observed in the run for 7 min (Fig. 5b), where the amount of feed CH_4 increased to the amount of lattice oxygen ($CH_4/Fe_2O_3 = 1.5$). Then, a certain amount of iron oxide was reduced to metallic iron, leading to CH_4 decomposition to give H_2 and carbon (reaction (14)). This corresponds to the steep increase in the H_2 response and decrease in the response of unreacted CH_4 , in the later stage of the reaction (after 5 min from the introduction of CH_4). Carbon formation was confirmed by the large response of CO in the oxidation stage together with the temperature increase in the catalyst bed.

3.4. Catalyst characterization

In order to confirm the above-mentioned redox cycles of Fe_2O_3 and metallic Fe or FeOx, XRD of fresh and reacted catalysts were examined. Fig. 6 shows diffraction patterns of a fresh


Fig. 6. XRD patterns of $Fe_2O_3(20)$ -Rh $_2O_3(0.5)/Y_2O_3$ catalyst. CH $_4$ or $O_2/Ar = 10/20$ (mL/min). (a) Fresh catalyst, (b) after CH $_4$ flow 10 min (CH $_4$ /lattice O = 1.08) at 800 °C, (c) after CH $_4$ flow 20 min (CH $_4$ /lattice O = 2.16) at 800 °C and (d) catalyst after the 10th re-oxidation

Fe₂O₃–Rh₂O₃/Y₂O₃ (Fig. 6a), catalysts after the reaction with CH₄ for 10 min (Fig. 6b), 20 min (Fig. 6c), and that after the 10th reaction-re-generation cycle (Fig. 6d). In the fresh and regenerated catalysts, diffraction peaks of strong Fe₂O₃ and minor iron yttrium complex oxide phases (FeYO₃) were observed. After the reaction with CH₄ for 10 min (Fig. 6b), in addition to the above phases, diffraction peaks of FeO and metallic iron could be detected. The sample, after the reaction with CH₄ for 20 min (Fig. 6c), afforded only diffraction peaks ascribed to metallic iron and Y_2O_3

These results clearly indicate that the redox cycles between Fe₂O₃ and Fe occurred to give H₂ and CO with the reaction of CH₄.

Fig. 7 shows SEM images of fresh and regenerated catalyst. No significant increase in particle size was observed before and after the 10th re-oxidation cycle, indicating that sintering of oxides was small.

Although CH₄ conversion did not reach 100% in these experiments, a smaller SV could be applied to obtain complete conversion of CH₄. Heat required for the reaction of CH₄ with the

Fig. 5. Change of product formation rates and catalyst bed temperature over $Fe_2O_3(20)$ -Rh $_2O_3(20)$ -Rh $_2O_3(0.5)/Y_2O_3$ at 800 °C. Catalyst: 0.1 g, reaction temperature: 800 °C, re-oxidation temperature: 800 °C, CH $_4$ or $O_2/Ar = 10/20$ (mL/min). (a) Reaction time: 2 min, re-oxidation time: 2 min, $CH_4/Fe_2O_3 = 0.4$ and (b) reaction time: 7 min, re-oxidation time: 7 min, $CH_4/Fe_2O_3 = 1.5$.

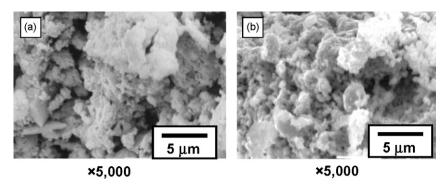


Fig. 7. SEM images of Fe₂O₃(20)-Rh₂O₃(0.5)/Y₂O₃ catalyst. (a) Fresh and (b) after 10th re-oxidation.

oxide could be supplied by the heat generated in the oxidation stage by continuously switching two or more reactors to produce H2.

4. Conclusion

Fe₂O₃-loaded Y₂O₃ catalyst promoted with a small amount of Rh₂O₃ produced H₂ and CO by the reaction with CH₄, and reduced iron was regenerated by air (Ar: $O_2 = 4:1$). Thus, without using pure oxygen, H₂ or synthesis gas free from nitrogen could be produced.

Acknowledgment

This work is supported in part by a Grant-in-Aid for Scientific Research (C) from JSPS and MEXT.HAITEK(2007).

References

- [1] J.R. Rostrup-Nilsen, in: J.R. Anderson, M. Boudart (Eds.), Catalysis, Science and Technology, vol. 5, Springer, Berlin, 1984, p. 1.
 T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell, P.D.F.
- Vernon, Nature 344 (1990) 319.
- [3] D.A. Hickman, E.A. Haupfear, L.D. Schmidt, Catal. Lett. 17 (1993) 223.
- [4] Q.G. Yan, T.H. Wu, W.Z. Weng, H. Toghiani, R.K. Toghiani, H.L. Wan, C.U. Pittman Jr., J. Catal. 226 (2004) 247.

- [5] K. Nakagawa, N. Ikenaga, T. Suzuki, T. Kobayashi, M. Haruta, Appl. Catal. A: Gen. 169 (1998) 281.
- S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today 93-95 (2004) 95.
- W.-Z. Sun, G.-Q. Jin, X.-Y. Guo, Catal. Commum. 6 (2005) 135.
- [8] A.P.E. York, T. Xiao, M.L.H. Green, Top. Catal. 22 (2003) 345.
- [9] K. Takehira, T. Shishido, P. Wang, T. Kosaka, K. Takaki, J. Catal. 221 (2004) 43.
- [10] J.R. Rostrup-Nielsen, Catal. Today 257 (1994) 21.
- [11] J.R. Rostrup-Nielsen, Catal. Today 243 (2002) 71.
- [12] N.Z. Muradov, Int. J. Hydrogen Energy 26 (2001) 191.
- [13] M. Ishida, H. Jin, Ind. Eng. Chem. Res. 35 (1996) 2469. [14] H. Jin, T. Okamoto, M. Ishida, Ind. Eng. Chem. Res. 38 (1999) 126.
- [15] R. Villa, C. Cristiani, G. Grroppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini, J. Mol. Catal. A: Chem. 204 (2003) 637.
- [16] K. Otsuka, Y. Wang, E. Sunada, I. Yamanaka, J. Catal. 175 (1998) 152.
- [17] S. Takenaka, K. Otsuka, Chem. Lett. (2001) 218.
- [18] K. Otsuka, C. Yamada, T. Kaburagi, S. Takenaka, Int. J. Hydrogen Energy 28 (2003)
- [19] K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, J. Power Sources 122 (2003) 111.
- [20] S. Takenaka, N. Hanaizumi, V.T.D. Son, K. Otsuka, J. Catal. 228 (2004) 405.
- [21] S. Takenaka, N. Hanaizumi, V.T.D. Son, K. Otsuka, J. Jpn. Petrol. Inst. 47 (2004) 377.
- [22] S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, J. Catal. 228 (2004) 66.
- [23] S. Takenaka, K. Nomura, N. Hanaizumi, K. Otsuka, Appl. Catal. A: Gen. 282 (2005) 333
- [24] S. Shikong, L. Ranjia, Z. Jiping, Y. Changchun, Chin. J. Chem. Eng. 11 (2003) 649.
- [25] Y. Wei, H. Wang, F. He, X. Ao, C. Zhang, J. Nat. Gas Chem. 110 (2006) 25856.
- [26] T. Kodama, T. Shimizu, T. Satoh, K.-I. Shimizu, Energy 28 (2003) 1055. [27] X.P. Dai, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110 (2006) 22525.
- [28] X.P. Dai, Q. Wu, R.J. Li, C.C. Yu, Z.P. Hao, J. Phys. Chem. B 110 (2006) 25856.